

Analog AI @ IBM Research–Almaden San Jose, CA USA

Accelerating Deep Learning with Analog Memory -A Device, Circuit and Systems Approach

Pritish Narayanan, Geoffrey W. Burr, Stefano Ambrogio, Hsinyu (Sidney) Tsai, Charles Mackin, and An Chen

IBM Almaden – San Jose, CA USA May 29, 2019

© 2019 International Business Machines Corporation

The power of deep neural networks (DNN)

Deep neural networks can solve some problems beyond human level accuracy.

Image recognition:

Speech recognition:

Machine translation:

Uno no es lo que es por lo que escribe, sino por lo que ha leído You are not what you write, but what you have read

www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan** ibm.biz/analog_AI ibm.biz/AI_hardwar

person

Deep Neural Networks

Synaptic weight Input data (images, raw speech data, etc.) input to neural network "MNIST" database ~1998 → check-reading ATMs Fully trained network Forward inference: "This is a seven." Hardware opportunity: Efficient, **low-power** deployment \rightarrow IBM *TrueNorth* UN-trained network Training: "um.. I have no idea?" This is a **seven**."

Hardware opportunity: Train & use big networks FASTER and at LOWER POWER.

A Deep Neural Network contains multiple layers, ...

each layer containing many **neurons**, ... each neuron driven through many synaptic weight connections from other neurons.

Computation needed for DNN: "Multiply-accumulate"

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan** ibm.biz/analog_AI ibm.biz/AI_hardware

NVM technologies include: MRAM (Magnetic RAM) PCM (Phase-Change Memory) RRAM (Resistance RAM)

Like conventional memory (SRAM/DRAM/Flash), an NVM is addressed one row at a time, to retrieve previously-stored digital data.

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan**

ibm.biz/analog_AI bm.biz/AI_hardware

Multiply-accumulate with Analog Memory

IBM

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan**

7

IBM.DIZ/AI NAT<u>AWATE</u>

DNN in-situ training using analog memory

W.

1) Forward Inference

Excitations (x) read weights W

 X_1

DNN in-situ training using analog memory

IBM

1) Forward Inference

Excitations (x) read weights W

- Backpropagate errors
 Deltas (δ) read weights W^T
- 3) Weight update Combine **x** and $\delta \rightarrow \Delta W \propto x_i * \delta_j$

0

Òm

W.

Value Proposition (vs. a GPU)

Accuracy **Low Power** Still of interest for power-(essential that final Deep-NN constrained situations: accuracy be indistinguishable (inherent in the physics, but possible to lose in the from GPUs – hardest learning-in-cars, etc. technical challenge) engineering...) Of zero interest Sweet spot: rather than Still of interest for some buy GPUs, people buy situations: learning-in-Of zero this chip instead for server-room interest training of Deep-NN's (circuitry must be Of zero Of zero massively parallel) interest interest Faster Analog AI @ May 29, 2019 10 **AI Hardware Center IBM Research–Almaden** Pritish Naravanan

High DNN accuracy despite imperfect PCM devices

Problem: Conductance changes in PCM are ...

- uni-directional
- stochastic
- non-linear \rightarrow asymmetric

What do we really want?

For training...

Gentle, symmetric conductance changes

Our published results in DNN training w/ PCM

2014 – IEDM \rightarrow **82%** w/ "mixed-hardware-software" experiment

2018 – Nature → 98% (e.g., software-equivalent!) w/ new unit-cell

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan** ibm.biz/analog_AI ibm.biz/AI_hardware

Novel 2T2R + 3T1C unit cell

Symmetry

- → Weight update performed on g+ only
- g⁻ shared among many columns (e.g. 128 columns)
- Dynamic Range
- Non-Volatility
- \rightarrow Weight transferred to PCMs infrequently (every 1000s of images)
- "CMOS variabilities" → Counteracted by "Polarity Inversion" technique

 \rightarrow Gain factor F (e.g. F = 3)

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan** S. Ambrogio et al., *Nature*, 558, 60 (2018)

ibm.biz/analog_AI bm.biz/AI_hardware

Accuracy on MNIST and MNIST with noise

S. Ambrogio et al., *Nature*, 558, 60 (2018)

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan**

ibm.biz/analog_AI ibm.biz/AI_hardware

High DNN accuracy despite imperfect PCM devices

Problem: Conductance changes in PCM are ...

- uni-directional
- stochastic
- non-linear \rightarrow asymmetric

What do we really want?

For training...

Gentle, symmetric
 conductance changes

For inference...

- Precise tuning
- High yield
- No change over time

Our recent results in DNN inference w/ PCM

2019 – Adv. Electr. Mater. → programming schemes for 4 PCM devices (simulations)

2019 – VLSI Tech. Symp. → software-equivalence in "mixed-hardware-software" experiment with Long-Short Term Memory (LSTM) networks (T8-1: Wed. June 12th, 10:30am)

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan** ibm.biz/analog_AI ibm.biz/AI_hardware

Programming strategies for multi-PCM weights

- Minimize computation expense
- Minimize area cost
- 2 bits per weights (p, s)
- Program entire row in parallel

C. Mackin et al., *Adv. Electr. Mater.*, 1900026 (2019)

Impact on Network Accuracy

- Two different types of networks
- Multiple parameters
- Software-equivalent accuracy despite NVM Variability

 $\mu_{G_{max}}, \sigma_{G_{max}}, \mu_{S_G}, \sigma_{S_G}$

Device:

IBM Research worldwide team: A comprehensive approach to Analog Al

IBM Research AI Hardware Center

IBM

AI Hardware Center About Research areas Partners Demos Leadership Contact

IBM Research

AI Hardware Center

The IBM Research AI Hardware Center is a global research hub headquartered in Albany, New York. The center is focused on enabling next-generation chips and systems that support the tremendous processing power and unprecedented speed that AI requires to realize its full potential.

Explore AI hardware demo

ead announcement blog

ibm.biz/AI_hardware

www.ibm.com/blogs/research/ 2019/02/ai-hardware-center/

IBM Research AI Hardware Center Analog AI @ IBM Research–Almader May 29, 2019 Pritish **Narayanan** ibm.biz/analog_AI ibm.biz/AI_hardware

19

8 ≡

Q

Explore AI hardware demo

Where are we on the Roadmap?

IBM

Al roadmap from IBM AI Hardware Center announcement

www.ibm.com/blogs/research/2019/02/ai-hardware-center/

H.-Y. Chang et. al, *IBM J. R&D,* invited paper, accepted May 2019

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan** ibm.biz/analog_AI ibm.biz/AI_hardware

How can we further improve energy efficiency w/ NVM devices?

- 1) **Reduce average NVM conductance** \rightarrow reduces array currents during Multiply-Accumulates
 - \rightarrow Current focus of various material and device design efforts
- 2) Reduce technology node

90nm -> 14nm

Benefits even just from scaling of routing energy

Area efficiency for inference: 10-70 TOPs/sec/mm²

(vs. ~0.3 TOPs/sec/mm2 for TPU v1: In-Datacenter Performance Analysis of a Tensor Processing Unit)

> H.-Y. Chang et. al, IBM J. R&D, invited paper, accepted May 2019

Conclusion

- NVM-based crossbar arrays can accelerate Deep Machine Learning compared to GPUs
 - Multiply-accumulate performed at the data \rightarrow saves power and time
 - But conventional NVM devices (like PCM) are imperfect...
- Recent training results
 - Mixed-hardware-software experiments → software-equivalent training accuracy
 - 2T2R+3T1C unit cell
 - "polarity inversion" technique
 - MNIST, MNIST-backrand, CIFAR-10 and CIFAR-100 tested (S. Ambrogio et al, Nature, 558, 60 (2018))

Recent inference results

- Programming strategies for 4-PCM-based weights
- Mixed-hardware software experiments on LSTM

(C. Mackin et al., *Adv. Electr. Mater.*, 1900026 (2019)) (H. Tsai et al., *VLSI Tech. Symp.* (2019))

- Recent power projections based on real circuit designs
 - 100x better energy efficiency (+ 100x speedup) on fully-connected layers (for LSTM and other networks)

(H.-Y. Chang et al., IBM J. R&D, (2019))

pnaraya@us.ibm.com

IBM Research AI Hardware Center Analog AI @ IBM Research–Almaden May 29, 2019 Pritish **Narayanan**

Acknowledgements

Geoffrey Burr

Bob Shelby Narayanan

Ambrogio

An Chen

Charles Mackin

Hosokawa

Scott Lewis

Management Support

Hsinyu

Tsai

Vijay Narayanan

Heike

Riel

Matthew **BrightSky**

Kumar

Spike Narayan

Winfried Wilcke

Bulent Kurdi

IBM Research **AI Hardware Center**

IBM Research–Almaden

Haensch

Pritish Narayanan

NVM-for-Machine Learning: Recent & upcoming papers

- G. W. Burr, R. M. Shelby et al., "Neuromorphic computing using non-volatile memory," *Advances in Physics X*, 2(1), 89-124 (2017).
 - Review of the NVM-for-neuromorphic field as a whole...
- 2. P. Narayanan, A. Fumarola, et al., "Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory," *IBM Journal of Research and Development*, **61**(4/5), 11:1-11 (**2017**)
 - · Summarizes the circuit design challenges
- 3. H. Tsai, S. Ambrogio, et al., "Recent progress in analog memory-based accelerators for Deep Learning," *Journal of Physics D*, 51(28), 283001 (2018)
 - Review & overview paper
- 4. S. Ambrogio, P. Narayanan, et al., "Equivalent-accuracy Neuromorphic Hardware Acceleration of Neural Network Training using Analog Memory," *Nature*, **558**(7708), 60 (**2018**)
 - Demonstrate software-equivalent accuracy on training of Fully-Connected networks w/ PCM-based mixed hardware-software experiment
- 5. G. Cristiano, M. Giordano, et al., "Perspective on training fully connected networks with resistive memories: Device requirements for multiple conductances of varying significance," *Journal of Applied Physics*, **124**(15), 151901 (**2018**)
 - · How does our multiple-conductance idea change the specifications for NVM devices needed for training?
- 6. C. Mackin, H. Tsai,, et al., "Weight Programming in DNN Analog Hardware Accelerators in the Presence of NVM Variability," *Advanced Electronic Materials,* 1900026 (2019)
 - How to accurately program multiple-conductance weights using NVM devices with device-to-device variability?
- 7. H. Tsai, S. Ambrogio, et al., "Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices," *VLSI Technology Symposium,* to be given (2019)
 - Demonstrate software-equivalent accuracy on inference of LSTM networks w/ PCM-based mixed hardware-software experiment
- 8. H.-Y. Chang, P. Narayanan, et al., "Al hardware acceleration with analog memory: micro-architectures for low energy at high speed," *IBM Journal of Research and Development*, to appear (2019)
 - Micro-architectural approaches that lead to both high energy efficiency AND large DNN acceleration

IBM Research AI Hardware Center May 29, 2019 Pritish **Narayanan** bm.biz/analog_AI m.biz/AI_hardware

ibm.biz/analog Al

NVM-for-Machine Learning: IBM Collaborators

- 9. S. Kim et al., "Analog CMOS-based Resistive Processing Unit for Deep Neural Network Training", arXiv, preprint 1706.06620
- 10. T. Gokmen et al., "Acceleration of deep neural network training with resistive cross-point devices: design considerations", **Frontiers in Neuroscience**, vol. 10, page 333, Jul 2016
- 11. Y. Li et al., "Capacitor-based Cross-point Array for Analog Neural Network with Record Symmetry and Linearity", VLSI Technology Symposium 2018
- 12. M.L. Gallo et al., "Mixed-precision training of deep neural networks using computational memory", **arXiv preprint** 1712.01192
- 13. I. Boybat et al., "Neuromorphic computing with multi-memristive synapses", **Nature communications**, vol. 9(1), page 2514, June 2018
- 14. A. Sebastian et al., "Temporal correlation detection using Computational Phase Change Memory, **Nature Communications**, vol. 8, page 1115, Oct 2017
- 15. S. R. Nandakumar et al., "Supervised learning in spiking neural networks with MLC PCM synapses", **Device Research Conference**, 2017
- 16. Gong et al., "Signal and Noise Extraction from Analog Memory Elements for Neuromorphic Computing", **Nature communications**, vol. 9(1), page 2102, May 2018
- 17. M. Salinga et al., "Monatomic phase change memory", Nature Materials, vol. 17, page 681-695, June 2018
- 18. I. Giannopoulos et al., "8-bit Precision In-Memory Multiplication with Projected Phase-Change Memory", **IEDM** 2018
- 19. J. Tang et al., "ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing", IEDM 2018

NVM-for-Machine Learning: (Some) Non-IBM Work

- S.B. Erylimaz et al., "Neuromorphic architectures with electronic synapses", International Symposium on Quality Electronic Design (ISQED), Mar 2016
- S. B. Eryilmaz, et al., "Device and system level design considerations for analog-non-volatile-memory based neuromorphic architectures," IEEE International Electron Devices Meeting (IEDM) 2015, pp. 4.1.1-4.1.4.
- S. Yu, "Neuro-Inspired Computing With Emerging Nonvolatile Memorys," in Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, Feb. 2018.
- P. Y. Chen, et al., "NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures," IEEE International Electron Devices Meeting (IEDM) 2017, pp. 6.1.1-6.1.4.
- E. J. Fuller et al., "Li-Ion Synaptic Transistor for Low Power Analog Computing", Advanced Materials, 29(4), 2017
- S. Agarwal *et al.*, "Achieving ideal accuracies in analog neuromorphic computing using periodic carry," Symposium on VLSI Technology, 2017, pp. T174-T175.
- <u>https://cross-sim.sandia.gov/</u>
- X. Guo *et al.*, "Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology," IEEE International Electron Devices Meeting (IEDM) 2017, pp. 6.5.1-6.5.4.
- M. Prezioso et al., "Training and operation of an integrated neuromorphic network based on metal-oxide memristors" *Nature*, vol. 521, pp. 61–64, 2015
- K. Moon *et al.*, "High density neuromorphic system with Mo/Pr0.7Ca0.3MnO3 synapse and NbO2 IMT oscillator neuron," IEEE International Electron Devices Meeting (IEDM) 2015, pp. 17.6.1-17.6.4.
- C. LI, Analogue signal and image processing with large memristor crossbars, Nature Electronics, vol. 1, pp. 52–59, 2018.
- S. Ambrogio, "Spike-timing dependent plasticity in a transistor-selected resistive switching memory", Nanotechnology 24 384012, 2013.
- E. Vianello et al., "Resistive Memories for Spike-Based Neuromorphic Circuits," 2017 IEEE International Memory Workshop (IMW), 2017

IBM Research AI Hardware Center

Analog AI @ IBM Research–Almaden

May 29, 2019 Pritish **Narayanan**